Search results

Search for "alkali halide" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • the cation on the output power. (f) Using sodium ions as fixed anions, various alkali halide anions were used to study the effect of the atomic number of the anion on the output power. Figure 6d–f were reprinted with permission from [78], Copyright 2015 American Chemical Society. This content is not
PDF
Album
Review
Published 25 Oct 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • from the underlying superconductors. With this prospect, we emphasize that, in addition to tip manipulations, the use of alkali halide islands, adsorbed on a superconducting surface and acting as a buffer layer, is another interesting field for research on topological superconductors [41][42][43][44
PDF
Album
Letter
Published 03 Jan 2022

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • different surfaces and compare, for sub-monolayer coverages, the influence of the deposition method on the formation of molecular assemblies. Whereas the island location is the main difference for metal surfaces, we observe for alkali halide and metal oxide substrates that the high-vacuum electrospray
  • method can yield single isolated molecules accompanied by surface modifications. Keywords: alkali halide; Au(111); bulk insulator; C60; electrospray; electrospray deposition; fullerene; high-vacuum electrospray deposition (HV-ESD); molecular assembly; nc-AFM; NiO; single molecule; thermal evaporation
  • reduce the size of the islands. For the alkali halide KBr and the metal oxide NiO, the structure size is reduced down to single molecules. In all cases, the creation of defects, possibly combined with remaining solvent, reduces the diffusion length of the molecules. For studies in which large molecular
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • , resulting in quasi free-standing graphene layers [18]. Alkali halide layers are frequently used as decoupling layers in surface science [19][20][21][22]. They are reported to form single- or double-layer islands with a typical cubic structure on single-crystalline transition metal surfaces [23][24
  • contrast, on hexagonal (111) oriented metal surfaces, alkali halides were reported to arrange in cubic islands [31][32][33]. Sometimes, they exhibit a moiré pattern, for example, as a result of the incommensurate growth in the system of NaCl/Cu(111) [34]. Furthermore, considering the interface of alkali
  • halide heterostructures, the top KBr film on NaCl(100) exhibits a superstructure with square islands, while the stretched NaCl film on KBr(100) grows flat with rectangular islands, clearly indicating a stronger interaction between the adlayer and the substrate in these examples [35]. In contrast to these
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • substrates, thin interfacial films of considerable thickness (5–10 monolayers) of alkali halides have been used in our lab [10]. In contrast, experiments on the light emission from molecules induced by scanning tunneling microscopy (STM-LE) required thin alkali halide films of two monolayers thickness in
PDF
Album
Full Research Paper
Published 03 Nov 2020

Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces

  • Laurent Nony,
  • Franck Bocquet,
  • Franck Para,
  • Frédéric Chérioux,
  • Eric Duverger,
  • Frank Palmino,
  • Vincent Luzet and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2012, 3, 285–293, doi:10.3762/bjnano.3.32

Graphical Abstract
  • step edges decorated with MSPS molecules that run along the <110> direction. These polar steps most probably minimize the surface energy as they counterbalance the molecular dipole by presenting oppositely charged ions on the rearranged step edge. Keywords: alkali halide surface; noncontact atomic
  • dominates. In the last few years, many studies have been focused on alkali halide surfaces as model systems for the study of OIHE on insulating substrates (for an overview see, for example, [5]). These surfaces are nonreactive, easy to prepare by cleavage of single crystals or by vapour deposition of thin
PDF
Album
Full Research Paper
Published 27 Mar 2012

An NC-AFM and KPFM study of the adsorption of a triphenylene derivative on KBr(001)

  • Antoine Hinaut,
  • Adeline Pujol,
  • Florian Chaumeton,
  • David Martrou,
  • André Gourdon and
  • Sébastien Gauthier

Beilstein J. Nanotechnol. 2012, 3, 221–229, doi:10.3762/bjnano.3.25

Graphical Abstract
  • first results of a coupled NC-AFM and KPFM study of the adsorption on KBr(001) of 2,3,6,7,10,11-hexa(cyanopropyloxy)triphenylene (HCPTP), presented in Figure 1. This molecule was designed to adsorb strongly on an alkali halide surface in the hope of blocking its diffusion at room temperature. It is
PDF
Album
Full Research Paper
Published 12 Mar 2012

Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM

  • Thilo Glatzel,
  • Lars Zimmerli,
  • Shigeki Kawai,
  • Ernst Meyer,
  • Leslie-Anne Fendt and
  • Francois Diederich

Beilstein J. Nanotechnol. 2011, 2, 34–39, doi:10.3762/bjnano.2.4

Graphical Abstract
  • substrates analyzed by scanning tunneling microscopy (STM) (for a few selected examples see [5][6][7][8][9][10][11][12][13]). Alkali halide thin insulating films on metal surfaces are often regarded as the model system for both testing experimental methodologies and validating new theories. In particular
  • kinks of the alkali halide crystals act as trapping points for the polar molecules, preventing them from diffusing freely over the surface. Simultaneously, intermolecular interactions force the cyano-porphyrins to form π–π stacks. These wires grow along the edges, forming long one-dimensional molecular
  • techniques by several cycles of Ar+ ion bombardment and subsequent annealing to 520 °C. KBr thin films were deposited on the clean Cu(111) substrates by sublimation, using a temperature controlled Knudsen cell. As a source material, crushed salt powder obtained from alkali halide single crystals was used. In
PDF
Album
Video
Full Research Paper
Published 13 Jan 2011
Other Beilstein-Institut Open Science Activities